Pressure Pan/ Duct Sealing Potential Chart

The updated Pressure Pan/ Duct Sealing Potential process incorporates the total airflow of a distribution system into the calculation.

Use the spreadsheet below (double click on the spreadsheet) to establish the home's CFM50 and CFM25 Duct Sealing Potential.

Process:

- 1. Determine the **average** of a home's pressure pan results from all registers (both supply and return) tested. Repeat process for each individual distribution system. Each individual distribution system should have a leakage value.
- 2. Determine the airflow of each system. A default of 400 CFM per ton can be used.
- 3. Enter system airflow in yellow box.
- 4. Enter the average pressure pan reading in the blue box.
- 5. Duct leakage is capped at 70% entered flow. CFM reading output will be red if 70% limit is exceeded. In cases where the 70% limit is reached, use the 70% value in the green box.

	System Air Flow	Average Pressure Pan			
		Reading			
	0	0			
Not to Exceed			CFM50		
70%	0	0	leakage		
			CFM25		
		0	leakage		

For straight heat furnaces (No AC evaporator in system)

100CFM per 10K gas input Natural Draft

130CFM per 10K gas input Induced Draft

150CFM per 10K gas input Condensing (90+ AFUE)